《弧长和扇形的面积》说课稿--中考必备

移民政策2023-09-06 16:08:41佚名

《《弧长和半圆的面积》学情剖析》这是优秀的教学设计文章,希望可以对您的学习工作中带给帮助!

《弧长和半圆的面积》说课稿

一、说用书剖析:

(一)、说用书的地位与作用:

本节课的教学内容是义务教育课程标准试验教科书,人教版九高二下册第24章《圆》中的“弧长和半圆面积”,从孩提时代的觉得矩形,到学校的认识图形,再到现在的系统学习,师生对圆的认识正在发生着质的变化。这节课是师生在前阶段学习了“圆的认识”“与圆有关的位置、关系”“正六边形和圆”的基础上进行的拓展与延展。本课时在高考中占有一定的分值,把握好这部份内容就是高考取胜的宝物,针对知识的产生过程,本节课造就性的使用用书,本节课的主要内容是在中学阶段学过的圆周长和面积公式的基础上,选用由特殊到通常的方式探求弦长及半圆面积公式,运用小组合作的形式让师生更好的理解弦长和半圆的面积的产生过程,让师生充分感受知识的产生过程,也重视英语技巧的渗透。并利用公式解决一些详细问题,为师生的学习及生活更好地利用物理作打算。对师生之后学习用动态解决物理问题的学习起到了伏笔作用。

(二)说教学目标

1、知识与技能(1)经历探求弦长估算公式及半圆面积估算公式的过程;

(2)了解弦长估算公式及半圆面积估算公式,并会应用公式解决问题。

2、过程与方式(1)经历探求弦长估算公式及半圆面积估算公式的过程,培养师生的探求能力。(2)了解弦长及半圆面积公式后,能用公式解决问题,训练中学生的英语利用能力。

3、情感心态与价值观(1)经历探求弦长及半圆面积估算公式.让师生感受教学活动富有着探求与造就,体验英语的缜密性以及英语推论的确定性。(2)通过用弦长及半圆面积公式解决实际问题扇形弧长公式,让师生感受英语与人类生活的紧密联系,迸发中学生学习英语的兴趣,增加它们的学习积极性,同时增加你们的利用能力。

(三)说教学重、难点

重点:弦长公式,半圆面积的推论及公式的应用。

难点:利用弦长和半圆的面积,估算组合图形的面积。

(四)说教法

针对九初三师生年纪特性和心理特征,以及它们现有的知识水平,通过小组合作与交流尝试练习推动共同进步,并用肯定的语言进行鼓励,激励中学生。引导师生积极思维、热情参与、大胆抨击、勇于实践,详细做法如下:(1)提问法-----启发诱导、逐渐深入(2)讨论法-----积极参与、求同化异(3)练习法-----中学生实践、巩固增加

二、说师生剖析

(一)、说师生情况剖析

九初三师生早已具有较强的逻辑思维能力和挺好的抒发能力。本班的师生学习能力通常,成绩中等较差。虽然班委的学习积极较高,团结性较差,合作能力较差。因而学知识时要循序渐进,巩固基础,在进一步拓展增强。

(二)、说学法

通过小组合作共同探究引导师生利用圆的边长公式、面积公式正确理解弦长、扇形面积公式及推论,巩固应用公式估算,求简略组合图形的半圆面积,培养师生的创新能力和概括抒发能力。让师生感受“从特殊到通常,再由通常到特殊”的辨证思想。

三、说教学过程

活动1创设情景,引进新课

从中学生身边熟悉的运动会入手,“为什么在200M赛跑时,六名参赛拳手的起跑位置不同?”提出问题,迸发师生学习新知识的热情.将师生的留意力紧紧吸引至课堂。

设计意图:从生活中的实际问题入手,使师生认识到英语总是与现实问题密不可分。并迸发师生的爱国热情。

活动2探求弦长公式

(1)直径为R的圆,边长是多少?

(2)圆的边长可以看作是多少度的圆心角所对的弧?

(3)1°圆心角所对弦长是多少?

(4)若设⊙O直径为R,n°的圆心角所对的弦长为L,则

班主任提出问题,引导师生剖析弦长和圆周长之间的关系,推导入n°的圆心角所对的弦长的估算公式。引导师生层层深入,进一步剖析,班主任提问、学生回答,互相补充。使师生明晰探求一个新的知识要从学过的知识入手,从特殊到通常,寻找他们的联系,探究规律,得出推论。

设计意图:让师生明晰探求一个新的知识要从早已学过的知识入手,寻求他们的联系,他就规律得出推论,这儿关键是1度的圆心角所对的弦长是多少?因而求出n度的圆心角所对的弦长,分散了教学难点,进一步把握了弦长公式。

活动3巩固弦长公式学因而用(1)、(2)、(3)题

设计意图:引导师生对所学公式进行简略的利用,寻找公式利用的实质。

活动4半圆定义

(1)创设情景引出半圆.

(2)由组成圆心角的两条边长和圆心角所对的弧所围成的图形称作半圆。

(3)判定五个图形是否是半圆.

观察图片扇形弧长公式,得出半圆定义,并能精确分辨出哪些样的图形是半圆。

设计意图:由观察图片和图形得出概念,记忆比较深刻,对熟练判定是否为半圆铺平了公路,只有明晰定义能够更好的学习深一层次的知识。

活动5探求半圆面积公式

(1)直径为R的圆,面积是多少?

(2)圆面可以看作是多少度的圆心角所对的半圆?

(3)1°圆心角所对半圆面积是多少?

(4)若设⊙O直径为R,n°的圆心角,所对的半圆面积为S,则。

师生在探求出弦长公式的基础上,班主任激励中学生自己用类比的方式尝试找寻探求方式,将半圆面积和圆的面积结合上去,剖析得出n°的圆心角所对的半圆面积公式。

师生要学因而用,在弦长公式的推论过程中,是由同学引导着剖析;而半圆面积公式完全由中学生自己推论,锻练她们的探求新知识的能力。感受成功的快乐。

设计意图:类比弦长公式的探求过程,引导师生探求半圆的面积估算公式,教会师生一种物理思想的步骤。

活动6记忆公式并用弦长表示半圆面积

班主任给出两个公式,师生尝试用更好的方式记忆公式。并在合作交流的基础上尝试推导入半圆面积和弦长之间的关系。并类比三角形面积的方式记忆,用练习进行巩固。

班主任出具四个基本的练习题,师生尝试使用公式解决.

设计意图:在推导入半圆面积和弦长之间的关系后,让师生用类比三角形面积的方式记忆,提高知识之间的联系。

活动7求不规则图形的面积

展示求阴影部份的面积,师生结合图形剖析解题思路,并通过小组合作把剖析过程简略的写在答题纸上,请老师讲解给你们听,多不同的剖析思路都予以肯定,使师生的思路再度活跃。

设计意图:有关求阴影部份的面积,要将图形通过旋转、平移、翻折等变换,转换为可求的图形的面积。

活动8求不规则图形的面积

知识要学因而用,非常是要与实际相联系。班主任出具幻kt板,求有水部份的弓形面积。师生结合图形剖析解体思路,并通过小组合作将剖析过程简略的写在答题纸上,请两名同事到上面讲给你们听,对不同的剖析思路都予以肯定。在中学生听明白的基础上,在答题纸上抒写解题过程,再集体订正、完善。结束后再度将问题拓展到水涨上去了弓形小于圆形了又该如何估算呢?用半圆面积加三角形面积。使师生的思维再度活跃。

.活动9对你们说你有哪些收获?

倡议中学生自己小结本节课所学知识,互相补充,以逐步巩固所学知识。

通过总结和反省,迸发师生主动参与意识,为每位中学生缔造在英语活动中荣获活动经验的机会.

设计意图:使师生在课后逐步巩固所学知识。对实际问题引导师生分步剖析,分步估算。感受英语来始于生活并服务于生活。

《弧长和半圆的面积》学情剖析这篇文章共8430字。

相关文章

《三年英语下册《4诗词三首》生字拼音扩词》:1、三年英语下册《4诗词三首》生字拼音扩词我会写寒hán(寒流、寒冷、寒来暑往)径jìng(径直、途径、大相径庭)斜xié(斜线、斜坡、目不近视)霜shuāng(霜冻、风霜、霜期)赠zèng(寄语、赠送、

《《傅雷家书》知识要领》:1、《傅雷家书》知识要领简介:《傅雷家书》是傅雷夫妻送给母亲的信件集,摘编了傅雷先生1954年至1966年的186封信件,最长的一封信历时7000多字。字里行间,富有了母亲对女儿的至爱、期望,以及对国家和世界的高尚感情

相关推荐

猜你喜欢

大家正在看

换一换