1、相似的定义为:对n阶方阵A、B,若存在可逆矩阵P,使得P^(-1)AP=B,则称A、B相似.
2、从定义出发,最简单的充要条件即是:对于给定的A、B,能够找到这样的一个P,使得:
P^(-1)AP=B;或者:能够找到一个矩阵C,使得A和B均相似于C.
3、进一步地,如果A、B均可相似对角化,则他们相似的充要条件为:A、B具有相同的特征值.
4、再进一步,如果A、B均为实对称矩阵,则它们必可相似对角化,可以直接计算特征值加以判断(与2情况不同的是:2情况必须首先判断A、B可否相似对角化).
5、以上为线性代数涉及到的知识,而如果你也学过矩阵论,那么A、B相似的等价条件还有:
设:A、B均为n阶方阵,则以下命题等价:
(1)A~B;
(2)λE-A≌λE-B
(3)λE-A与λE-B有相同的各阶行列式因子
(4)λE-A与λE-B有相同的各阶不变因子
(5)λE-A与λE-B有相同的初等因子组
a lot 、a lot of 、lots of之间的区别
a lot of 既可以修饰可数名词,也可以修饰不可数名词 二者区别是: a lot of后面必须接名词,如果没有名词的话,就不能加of,即a lot后不接成分。 a lot 说明数量或程度, 喝了很多水: drink a lot of water drink a lot a lot of 、lots of这俩之间没有什么区别,可以互用。